Introduction: The Urgent Need to Address the Global Sulfur Nutrient Gap
In modern intensive agriculture, macronutrient fertilizers such as nitrogen, phosphorus, and potassium are widely used, but sulfur, a key secondary nutrient, is often overlooked. Sulfur is essential for synthesizing sulfur-containing amino acids, proteins, vitamins, and chlorophyll formation, directly impacting crop yield and quality. However, with the strengthening of global industrial emission reduction measures, atmospheric sulfur deposition from natural sources (e.g., volcanic activity) and anthropogenic sources (e.g., fossil fuel combustion) continues to decline, leading to increasing deficiencies of bioavailable sulfate in many farmland soils. Simultaneously, industrial processes like oil refining and natural gas processing generate millions of tons of elemental sulfur by-products annually, some of which are not utilized efficiently. This acute supply-demand contradiction highlights the extreme urgency of developing sustainable technologies to convert industrial sulfur by-products into efficient agricultural fertilizers. This study focuses on the design and preparation of high-nitrogen sulfur fertilizers, aiming to closely integrate industrial sulfur resources with crop nitrogen demand through innovative engineering solutions, providing new nutrient management strategies for the sustainable production of global food and energy crops.
I. Core Research Approach: From Liquid Formulation to Solid Formation
To overcome issues with traditional sulfur-containing fertilizers, such as low nitrogen content, poor physical properties, or uncoordinated nutrient release, this study followed a systematic material design and engineering pathway. The research consisted of two closely linked core stages: first, the development of a high N:S ratio liquid fertilizer matrix based on precise phase diagram analysis; second, the preparation of composite solid granular fertilizers with high physical strength and balanced nutrients by granulating this matrix with various functional additives. This “liquid-solid” combined strategy not only ensures precise ratio and high uniformity of nitrogen and sulfur nutrients in the product but also addresses practical problems during storage and application by optimizing granule structure.
1. Liquid Phase System Design and Formulation Determination
The foundation of the research was a detailed phase composition analysis of the ternary system composed of urea, urea sulfate (2CO(NH₂)₂·H₂SO₄, i.e., diurea sulfate), and water. By precisely determining the phase equilibrium relationships of this system at different temperatures and concentrations, the researchers were able to draw clear phase diagrams. Based on these diagrams, the physical state (e.g., solution, slurry, or crystals) of the system at different ratios can be accurately predicted and controlled, thereby avoiding issues like crystallization blockages during production. Ultimately, the research team successfully optimized a formulation for a diurea sulfate-based liquid fertilizer with a high nitrogen-to-sulfur ratio (N:S ≈ 15:1). This liquid product has high nitrogen content, sulfur in the plant-available sulfate form, and exhibits good low-temperature stability and fluidity. It can be used either as an end-product for foliar or fertigation application, or as a core raw material for producing high-grade compound granular fertilizers.
2. Composite Granulation and Performance Enhancement of Solid Granular Fertilizer
To make the product more suitable for the storage, transportation, and mechanized application of bulk fertilizers, the second stage of the research focused on converting the liquid matrix into high-strength composite granules. The researchers designed three different additive formulations for granulation experiments:
(i) Dolomite Formulation: Using the natural mineral dolomite (mainly calcium magnesium carbonate) as an additive and filler. Dolomite not only provides the secondary nutrients calcium and magnesium, improving soil pH, but its particulate structure also helps enhance the fertilizer’s friability and compressive strength.
(ii) Industrial By-product Formulation: Innovatively using a by-product of the phosphoric acid extraction process—hemihydrate calcium sulfate (CaSO₄·0.5H₂O)—as an additive. This approach achieves “treating waste with waste,” converting an industrial solid waste into an effective fertilizer component. It provides sulfur and calcium while reducing production costs, embodying the circular economy concept.
(iii) Complete Nutrient Composite Formulation: To prepare a more comprehensive fertilizer, a mixture of dolomite, diammonium phosphate, and potassium chloride was used as the additive. Through precise formulation, a compound granular fertilizer with a nutrient label of 16-16-16-5.5(S)-0.4(MgO)-0.6(CaO) was successfully produced. This means the fertilizer contains 16% nitrogen (N), 16% phosphorus (P₂O₅), 16% potassium (K₂O), 5.5% sulfur (S), and significant amounts of magnesium and calcium.
Granulation was not the end point. The research team used X-ray diffraction technology to monitor in real-time the dynamic changes in the crystalline phase composition of the granules during the curing (storage) process. They found that over time, slow crystallization and rearrangement reactions occur within the granules, forming more stable crystal structures, a process known as “post-curing.” Experimental data showed that after 30 days of curing, the compressive strength of the composite granular fertilizer increased significantly from an initial ~1.200 MPa to 3.800 MPa. This strength index exceeds that of many conventional compound fertilizers on the market, indicating that the product has excellent anti-caking and abrasion resistance, can withstand the physical impacts of long-distance transportation and mechanized spreading, and ensures stable quality from the factory to the field.
.jpg)
II. Technical Advantages and Application Prospects
The high-nitrogen sulfur compound fertilizer developed in this study possesses multiple significant advantages:
· Efficient Nutrient Synergy: The combination of high nitrogen with sulfur in the sulfate form promotes crop assimilation and utilization of nitrogen, improving protein synthesis efficiency. This is particularly effective for sulfur-loving crops such as rapeseed, onions, and garlic.
· Resource Recycling: The core technology converts sulfur from refining by-products and gypsum from the phosphoric acid industry into high-value agricultural inputs, perfectly aligning with the principles of green chemistry and the circular economy, thereby reducing environmental burdens.
· Superior Product Physical Properties: Through innovative formulation and process, historical challenges of sulfur-containing fertilizers, such as being prone to deliquescence and having poor strength, have been addressed. The product features uniform granules, high strength, and good flowability.
· Convenient and Flexible Application: The derived liquid formulation is suitable for precision agriculture and foliar supplementation, while the solid granular formulation is suitable for field basal or top-dressing applications, meeting the needs of different agricultural systems.
Looking ahead, this technology has broad application prospects. Globally, especially in temperate agricultural regions severely affected by reduced sulfur deposition and large-scale cash crop plantations, there is huge demand for such customized high-nitrogen sulfur fertilizers. Future research could focus on conducting long-term field trials in different soil-crop systems to quantify their yield-enhancing, quality-improving effects and environmental benefits, and further optimizing the process to reduce energy consumption and costs for large-scale production.
From Innovative Formulation to Industrial-Scale Granulation
The development of high-nitrogen sulfur fertilizers exemplifies the sophistication of modern npk fertilizer production technology. Transforming this specialized liquid or powder formulation into a market-ready solid product requires integration into a complete npk fertilizer production line. The process begins with precise batching using a npk blending machine or a bulk blending fertilizer machine to ensure the accurate combination of nitrogen sources (like diurea sulfate), sulfur components, and other additives such as dolomite or potassium chloride. This precise mixture is the foundation of the entire manufacturing of npk fertilizer process.
The uniformly mixed material then enters the core fertilizer granulation stage. Advanced npk granulation machine technology is employed, utilizing equipment such as a npk fertilizer granulator machine or a disc granulator machine to transform the blend into dense, uniform granules. This specialized npk fertilizer machine must be capable of handling the unique properties of the high-nitrogen sulfur matrix to achieve the desired compressive strength and physical stability. The entire npk fertilizer manufacturing process—from precision blending to controlled granulation and curing—demonstrates how industrial-scale engineering is essential to translate innovative nutrient formulations into practical, high-performance fertilizers that address specific global agricultural challenges, such as sulfur deficiency, while maintaining efficient and reliable production.
Conclusion
Faced with the global challenges of soil-available sulfur deficiency and the mismatch of industrial sulfur resources, this study has successfully developed a complete set of technologies for high-nitrogen sulfur fertilizers in forms ranging from liquid to granular through precise phase engineering and material design. This technology not only achieves the scientific combination of nitrogen and sulfur nutrients and the high-value utilization of industrial by-products but also endows the product with excellent physical properties through ingenious granulation processes. This marks a solid step forward in connecting industrial and agricultural ecosystems and building a sustainable nutrient management system, providing powerful scientific and technological support for ensuring global food security and promoting the green transformation of agriculture.









