Customized BB Fertilizer Coating Production Line: Coating Enables Efficient Fertilization!

Recently, Zhengzhou Huaqiang Heavy Industry Technology Co., Ltd. completed the installation and commissioning of a customized BB fertilizer coating production line for its client, officially commencing large-scale production. This production line focuses on the core needs of precise proportioning and enhanced efficiency through coating of BB fertilizer (blended fertilizer). It integrates key processes such as batching, melting, coating, storage, and packaging. With its compact layout, efficient equipment coordination, and stable coating effect, it provides fertilizer production enterprises with a high-quality customized BB fertilizer solution, helping to improve fertilizer utilization and crop yield.

Core Configuration and Full-Process Analysis of the Production Line

The entire BB fertilizer coating production line is built around the core logic of “precise batching – coating solution preparation – uniform coating – finished product output.” The equipment selection is professional, the process is seamless, and the functions of each unit are precisely matched, fully ensuring the accuracy of the BB fertilizer formulation and the quality of the coating.

Precision Batching Unit: Laying a Solid Foundation for Nutrient Balance

The production line is centered around a 5-compartment automated batching unit. Each of the 5 independent compartments stores nitrogen, phosphorus, and potassium as primary raw materials, as well as two different types of trace element additives. The compartments are designed with partitioned isolation to effectively prevent cross-contamination and ensure formula purity. A high-precision metering screw conveyor is installed at the bottom of each batch of batches. Combined with a PLC intelligent control system, it automatically adjusts the feed rate of each raw material according to the preset formula, with a metering error of ≤0.5%. This ensures that the nutrient ratio of each batch of product is accurately met, adapting to the fertilization needs of different crops and different growth stages.

After batching, the mixed raw materials are smoothly transferred to a 9-meter bucket elevator via a 9-meter belt conveyor. This elevator uses a plate chain drive design, has a strong load-bearing capacity, and operates stably. It can vertically transport materials to the subsequent coating stage, with a conveying efficiency of 8 tons/hour. The equipment also has excellent sealing, effectively reducing dust and material loss during the transport process.

Core Coating Unit: Achieving Efficient and Uniform Coating

Coating Solution Preparation System: Equipped with a dedicated coating solution melting and stirring tank. This equipment adopts a double-jacketed heating design, which can precisely control the temperature inside the tank (50-80℃), ensuring that the coating agent (such as anti-caking agent, slow-release agent) melts rapidly and mixes uniformly. The stirring speed can be adjusted by a frequency converter (20-40r/min) to avoid sedimentation and stratification of the coating solution, ensuring consistent coating effect. The tank is equipped with liquid level monitoring and automatic replenishment functions to maintain the coating solution level in real time and ensure continuous operation of the production line.

Core Coating Equipment: Employs a Φ1.8×7.0 meter drum-type coating machine. This equipment is the key equipment for BB fertilizer coating treatment. The inner wall of the drum is lined with special wear-resistant plates, combined with a spiral layout of lifting plates, which can drive the material to fully tumble and scatter within the drum, ensuring that each fertilizer particle is evenly contacted with the coating solution. The coating machine is equipped with an atomizing spraying system that evenly sprays the molten coating liquid onto the material surface in the form of micron-sized droplets. The spraying amount can be precisely controlled according to the material flow rate, ensuring uniform coating thickness (0.05-0.1mm) and a coating rate of over 98%. During equipment operation, the drum speed and material residence time can be flexibly adjusted to adapt to BB fertilizer raw materials of different particle sizes and characteristics, achieving customized coating effects.

Finished Product Storage and Packaging Unit: High-Efficiency Output Ensures Quality

After coating, the BB fertilizer granules are transferred to the finished product silo via a 6-meter bucket elevator. The silo features a sealed design and is equipped with dehumidification and ventilation devices to effectively prevent the fertilizer from absorbing moisture and clumping, ensuring product storage stability. Material level sensors are installed inside the silo to provide real-time feedback on inventory status, facilitating companies to rationally plan production and shipment schedules.

The packaging process is equipped with a dual-station automatic packaging scale, supporting rapid switching between various packaging specifications such as 25kg and 50kg. Utilizing gravity-based metering principles and high-precision sensors, the metering error is ≤±0.1kg. A single station can package up to 100 bags/hour, while parallel operation with two stations can achieve a packaging capacity of 200 bags/hour, perfectly matching the production line’s wrapping output efficiency. The packaging machine integrates automatic sewing and conveying functions. After metering, bagging, and sewing, materials are directly transported to the finished product stacking area via conveyor belt. The entire process is automated, reducing manual intervention, labor intensity, and material loss.

Core Advantages and Application Value of the Production Line

Compact and Efficient Layout: The entire production line adopts a modular and compact design, requiring only 300 square meters of space, saving 30% of space compared to traditional wrapping production lines. The reasonable spacing between equipment facilitates later maintenance and repair.

Superior Coating Quality: The precise coordination of the roller coating machine and the atomizing spraying system ensures a uniform and dense coating layer, effectively improving the BB fertilizer’s resistance to moisture absorption, anti-caking, and slow-release nutrient effect, increasing fertilizer utilization by 15%-20% compared to ordinary BB fertilizers.

Intelligent and Convenient Operation: The entire production line integrates a PLC control system with a Chinese touchscreen interface, allowing real-time monitoring of key parameters such as ingredient ratios, coating solution temperature, and equipment operating status. It supports automatic fault alarms and data recording, facilitating refined management for enterprises. The equipment operation process is simple, and users can become proficient after a short training period.

Integrated Solutions for Complete Fertilizer Production

This BB fertilizer coating line represents a specialized segment of modern fertilizer manufacturing. It demonstrates Huaqiang Heavy Industry’s capability in providing targeted solutions that enhance product value through precise blending and coating.

For clients requiring a more comprehensive production system, this line can be integrated as a finishing module within a complete npk fertilizer production line. The coated BB fertilizer produced here is a key product type within the broader npk fertilizer manufacturing process. The initial stage of this process often relies on core blending and granulation technologies. An npk bulk blending machine (or bulk blending fertilizer machine) is essential for creating the uniform raw material mix. For producing compound granules, advanced npk granulation machine technology is employed, utilizing equipment such as an npk fertilizer granulator machine to perform the fertilizer granulation that transforms powder into robust, market-ready NPK fertilizer granules.

We warmly welcome people from all walks of life to visit, guide, and discuss business with Huaqiang Heavy Industry to create a new future for green agricultural development!

What materials can a ring die pelleting machine handle?

Ring die pelleting machines are widely used for granulation in industries like organic fertilizer and biomass energy. However, different materials vary in suitability. Choosing the right material boosts efficiency and extends the ring die pelleting machine’s life.
1.Organic fertilizer materials
Livestock manure: Chicken, cow, or pig manure can be pelletized into organic fertilizer after fermentation.
Agricultural waste: Materials like straw, rice husks, or mushroom residue can be crushed and mixed into bio-organic fertilizer.
Sludge-based fertilizers: Sewage sludge or biogas residue can be used for pelletizing after dehydration.
Humic acid fertilizers: Blends of humic acid with NPK nutrients make efficient organic-inorganic compound fertilizers.
2.Inorganic fertilizer materials
Compound fertilizers: Mixtures like nitrogen, phosphorus, and potassium (urea, MAP, KCl, etc.).
Single-nutrient fertilizers: Powdered fertilizers (like ammonium sulfate, potassium nitrate) turned into granules.
Micronutrient fertilizers: Materials containing zinc, iron, boron, etc., formed into uniform pellets.

3.Biomass energy materials
Wood pellets: Sawdust, wood shavings, or wood chips pressed into high-density fuel.
Straw pellets: Crop waste like corn or wheat stalks processed into clean energy pellets.
Other biomass: Peanut shells, palm shells, bagasse, etc., processed into fuel pellets.
The properties of different materials (moisture content, viscosity, fiber content) will affect the granulation effect of the ring die pelleting machine. It’s crucial to select the right ring die (compression ratio, hole size). And adjust process parameters (temperature, pressure).

How ring die pelleting machines work and their advantages in granulation?

In the world of powder granulation, various granulation technologies have their strengths. Whether it’s a rotary drum granulator suitable for high output and good pelletizing, a compact flat die pelleting machine, or a fertilizer compaction machine specializing in high-hardness products, they all play a crucial role in their respective fields. Among them, the ring die pelleting machine, with its unique structure and wide applicability, has become an indispensable piece of equipment.

From pelleted feed for livestock and poultry to fuel for biomass power generation, and the preparation of organic fertilizers, many seemingly insignificant granular items may have its contribution behind the scenes. It doesn’t have a fancy appearance; at its core is a ring die filled with precise holes. This process is essentially a highly efficient physical molding. The change it brings is intuitive: loose powder disappears, replaced by regular, solid granules. This transformation brings enormous practical value.

It’s worth noting that technological evolution has never stopped. For example, the new type two in one organic fertilizer granulator, which emerged to meet market demand, integrates multiple functions to simplify the process. However, the fundamental principles of ring die granulation, due to its reliability and efficiency, remain the cornerstone of many equipment designs.

It can be said that this silent industrial artist does not change the essence of the material, but powerfully endows it with the most practical form. In countless factory workshops, it, along with other types of granulation equipment, organizes the complex world of powders into a neat and uniform order of particles.

Core equipment for bio-organic fertilizer production lines adapted to complex working conditions

The raw materials for bio-organic fertilizer production often contain half-wet materials such as livestock and poultry manure and kitchen waste. These materials are highly viscous and difficult to process, and the fermentation process often faces challenges such as large piles and complex sites. The half-wet material crusher and windrow compost turner, as specialized equipment for bio-organic fertilizer production, are precisely adapted to these complex working conditions and are key to ensuring the stable and efficient operation of the bio-organic fertilizer production line.

The half-wet material crusher is the core equipment for the pretreatment of half-wet raw materials. With its special blade structure and anti-sticking design, it can effectively overcome the problem of wet material adhesion, crushing half-wet raw materials with a moisture content of 30%-60% into uniform particles through shearing and extrusion. This not only prevents material clumping from hindering subsequent processes but also improves the uniformity of the mixture of raw materials and fermentation agents, laying the foundation for efficient composting. It is the ideal equipment for processing half-wet raw materials in bio-organic fertilizer production lines.

After pretreatment, the raw materials enter the fermentation stage, where the windrow compost turner demonstrates its unique advantages in adapting to complex working conditions. Its crawler-type walking structure can easily handle uneven fermentation sites and can deeply turn over large areas and high piles of material, breaking up compacted layers to ensure ventilation and aeration, and uniformly regulating the pile temperature to accelerate microbial decomposition and improve fermentation efficiency. In large-scale bio-organic fertilizer production lines, its flexible movement and efficient turning capabilities make large-scale fermentation smoother.

Working together, these two pieces of equipment precisely solve the industry pain points of half-wet raw material processing and large-scale fermentation, fully demonstrating the important role of bio-organic fertilizer equipment in improving the adaptability and efficiency of bio-organic fertilizer production lines.

NPK blending fertilizer production line: Equipment selection and uniformity improvement

The core advantage of NPK blended fertilizers lies in their flexible nutrient ratio, and this advantage is achieved through the precise coordination of various blending and mixing equipment in the production line. Whether it’s a BB fertilizer mixer, an NPK blending machine, or a bulk blending fertilizer machine, the selection, suitability, and operating status of the equipment directly determine the nutrient uniformity and market competitiveness of the final product.

Equipment selection must match production needs. Small and medium-sized production lines are suitable for BB fertilizer mixers, which are easy to operate and have low energy consumption, meeting the needs of small-batch, multi-ratio blending, especially suitable for customizing special fertilizers for regional crops; large-scale production is more suitable for NPK blending machines, which have large mixing capacity and high mixing efficiency, and can ensure the full integration of nitrogen, phosphorus, potassium, and trace elements through a multi-stage mixing structure, adapting to a continuous production rhythm. Bulk blending fertilizer machines focus on the on-site blending needs of bulk materials, offering strong flexibility and effectively reducing packaging and transportation costs, suitable for direct supply to large planting bases.

Operational optimization is key to ensuring uniformity. Regardless of the equipment used, the feeding sequence and speed must be strictly controlled, following the principle of “fine materials first, then coarse materials; light materials first, then heavy materials,” to avoid material stratification; at the same time, the mixing speed and time should be adjusted according to the material characteristics to prevent over-mixing leading to material segregation, or insufficient mixing resulting in uneven nutrient distribution.

In summary, an NPK blending fertilizer production line needs to rationally select a BB fertilizer mixer or a bulk blending fertilizer machine based on production capacity and application scenarios, and optimize operating parameters to consistently produce high-quality blended fertilizers.

Choosing the Right NPK Fertilizer: Enhancing Crop Yield and Quality

 In global agricultural production, selecting the right NPK fertilizer is a key factor influencing crop yield and quality. This article will delve into the characteristics and applicable scenarios of different NPK fertilizers to help growers make informed choices and achieve efficient and sustainable agricultural production.

Understanding Crop Needs: The Foundation for Selecting the Right Formula

The first step in selecting NPK fertilizer is understanding the nutrient requirements of the target crop. Different crops, and even the same crop at different growth stages, have varying requirements for the proportions of nitrogen, phosphorus, and potassium. For example, leafy vegetables require more nitrogen to promote leaf growth, while fruit trees need more potassium during the fruiting period to promote fruit enlargement and sugar accumulation.

For field crops, balanced fertilizers (such as 15-15-15) are generally a good choice because they comprehensively provide the basic nutrients needed by the crop. For higher-value fruit and vegetable crops, specialized formula fertilizers often bring better results and returns. Modern precision agriculture technologies, such as soil testing and leaf analysis, can help growers more accurately understand crop needs and thus select the most suitable fertilizer formula.

Considering Soil Conditions: Suitability is Crucial

Soil characteristics are a critical factor to consider when selecting fertilizers. The pH, texture, and nutrient status of different soils directly affect fertilizer effectiveness and crop response.

In acidic soils, sulfur-based fertilizers are generally more suitable than chloride-based fertilizers because they do not exacerbate soil acidification and can replenish sulfur. For alkaline soils, chloride-based fertilizers may be a more economical choice. Soil texture also influences fertilizer selection: sandy soils have poor nutrient retention capacity and are suitable for slow-release fertilizers to reduce nutrient loss; clay soils can use conventional fertilizers.

Furthermore, the existing nutrient levels in the soil must be considered. Understanding the nitrogen, phosphorus, and potassium content of the soil through soil testing can avoid unnecessary nutrient application, saving costs and reducing environmental burden. In soils lacking micronutrients, choosing compound fertilizers fortified with these elements may be more advantageous.

Assessing the Production System: Matching Application Methods

The scale of planting and the level of mechanization of the production system directly affect the choice of fertilizer form. Large-scale farming typically requires granular fertilizers suitable for mechanized application, while small-scale or facility-based farming may prefer powdered or liquid fertilizers.

For modern farms using drip or sprinkler irrigation systems, highly water-soluble fertilizers are essential. Liquid fertilizers or fully water-soluble powdered fertilizers can mix evenly with water, ensuring proper operation of the irrigation system and uniform nutrient distribution. Traditional field crops can use conventional granular fertilizers, applied by broadcasting or strip application.

Labor costs are also a factor to consider. In areas with labor shortages or high costs, choosing slow-release or controlled-release fertilizers can reduce the number of fertilizations, thereby lowering labor costs. Although the initial investment in these fertilizers is higher, they may be more economical over the entire growing season.

Environmental Considerations: Choices for Sustainable Agriculture

With increasing global emphasis on environmental protection, choosing environmentally friendly fertilizers is becoming increasingly important. While controlled-release and slow-release fertilizers are more expensive, they significantly reduce nutrient loss and the risk of water pollution, aligning with the development direction of sustainable agriculture.

Organic-inorganic compound fertilizers combine the rapid effects of chemical fertilizers with the soil-improving properties of organic fertilizers, helping to increase soil organic matter content and improve soil structure. These fertilizers are particularly suitable for soils used in long-term, continuous cropping, and can alleviate soil degradation problems.

When choosing fertilizers, local climate conditions should also be considered. In rainy areas, choosing fertilizer forms that are less prone to leaching is especially important; while in arid areas, the water solubility of the fertilizer needs to be considered to ensure that crops can absorb nutrients under limited water conditions.

Economic Benefit Analysis: Balancing Costs and Benefits

Finally, a balance needs to be found between costs and expected benefits when choosing fertilizers. Although high-end fertilizers (such as controlled-release fertilizers and specialized formula fertilizers) are more expensive, they may provide higher returns by increasing yields, improving quality, or reducing other inputs (such as labor and irrigation).

For bulk crops, such as grains, cost-effectiveness may be the primary consideration, so economical general-purpose fertilizers may be more suitable. For high-value crops, such as fruits, vegetables, or specialty crops, investing in more precise, specialized fertilizers often yields better economic benefits.

It’s important to note that fertilizer costs include not only the purchase price but also transportation, storage, and application costs. Granular fertilizers are generally easier to store and transport than powdered fertilizers, while liquid fertilizers require specialized storage and application equipment. These factors should all be considered comprehensively when making a decision.

Future Trends and Innovations

The NPK fertilizer industry is constantly innovating, with new fertilizer products emerging continuously. Improvements in coating technology make controlled-release fertilizers more precise and economical; fertilizers with added biostimulants or beneficial microorganisms are gaining attention; and fully water-soluble crystalline fertilizers offer more options for greenhouse agriculture.

Digital technology is also changing how fertilizers are selected and applied. Through sensors, drones, and intelligent algorithms, growers can more accurately monitor crop nutrient status and achieve on-demand fertilization. These technological developments will make fertilizer selection more scientific and fertilization more precise, ultimately achieving efficient resource utilization and sustainable agricultural development.

By comprehensively considering crop needs, soil conditions, production systems, environmental factors, and economic benefits, growers can choose the NPK fertilizer best suited to their specific circumstances, achieving high-yield, high-quality, and efficient agricultural production.

Conclusion: Bridging Smart Selection with Advanced Manufacturing

In summary, selecting the optimal NPK fertilizer requires a nuanced analysis of crop needs, soil conditions, and farm economics. This thoughtful selection process ensures efficient nutrient use, supports crop health, and promotes environmental stewardship, ultimately maximizing both yield and sustainability.

The diverse fertilizer options available to farmers are made possible by sophisticated npk fertilizer production technology. A complete npk fertilizer production line utilizes advanced fertilizer granulation methods to create these products. The process typically involves precise blending of raw materials using an npk blending machine or npk bulk blending machine and a fertilizer mixer machine. The mixture is then formed into granules using key equipment such as an npk fertilizer granulator machine (employing npk granulation machine technology), a disc granulator machine, or a fertilizer roller press machine. Each piece of npk fertilizer machine within this npk fertilizer manufacturing process is designed to produce the specific formulations—from general blends to specialized controlled-release products—that meet the precise needs identified through smart agronomic selection.

Ultimately, the synergy between informed on-farm decision-making and precision manufacturing ensures a reliable supply of tailored nutrients, driving the future of productive and responsible agriculture.

Horizontal Agitation Granulation: An Innovative Solution for Organic Fertilizer Production

Overview Horizontal agitation and extrusion granulation technology is one of the core processes in the production of organic and bio-fertilizers. Through unique mechanical action, it directly transforms high-moisture, high-viscosity organic raw materials into uniform granules without external heating or the addition of binders. This low-temperature, low-energy granulation method is particularly suitable for processing organic waste such as livestock and poultry manure, straw, and mushroom residue, making it the preferred technology for modern organic fertilizer production.

Technical Principles and Process Characteristics

The core of this technology lies in the double-helix agitator shaft design within the horizontal main unit. When the motor drives the agitator shaft to rotate, the material undergoes three key processes within the cylinder: powerful agitation and mixing, axial propulsion and conveying, and radial extrusion molding. The raw material is first thoroughly kneaded and mixed by the propeller blades to form a uniform material agglomerate; then, under axial thrust, it moves towards the discharge end; finally, it is extruded into cylindrical granules through the discharge screen.

The greatest advantage of this process is that it operates at low temperatures throughout. Unlike traditional granulation processes that require high-temperature drying, horizontal mixing granulation maintains a relatively constant material temperature, ensuring a survival rate of over 95% for active microorganisms in the bio-fertilizer. Simultaneously, this technology can directly process raw materials with a moisture content of 25%-45%, eliminating the energy-intensive drying process and significantly reducing production costs.

Capacity and Configuration: Horizontal mixing granulation production lines offer a wide range of capacity to meet the needs of different production scales. Small production lines can process 1-3 tons of material per hour, suitable for family farms or small organic fertilizer workshops; medium-sized production lines have a capacity of 3-8 tons/hour, meeting the needs of county-level fertilizer plants; large production lines can reach 8-15 tons/hour, suitable for large-scale production enterprises; customized high-capacity lines can even reach a capacity of 15-25 tons/hour.

Key factors affecting capacity include raw material characteristics, moisture content, and equipment parameters. Organic fertilizer compost typically has a lower capacity, while the capacity of compound fertilizer raw materials can be increased by 20%-30%. The optimal moisture content range is 30%-35%. Too high a moisture content will cause material adhesion, while too low a moisture content will affect the molding effect. Regarding equipment, proper adjustment of the stirring shaft speed and extrusion gap is crucial for optimizing production capacity.

Application Areas and Product Compatibility

This technology is mainly applicable to two categories of fertilizer production:

The primary categories include pure organic fertilizer, bio-organic fertilizer, and refined organic fertilizer. These products are based on organic materials such as livestock and poultry manure and agricultural waste, and can be directly produced into commercial organic fertilizer that meets national standards using this technology.

Compatible categories include organic-inorganic compound fertilizers, micronutrient fertilizers, and low-concentration compound fertilizers. These products require the addition of inorganic nutrients to the organic fertilizer base; efficient production can be achieved through minor process adjustments.

It should be noted that this technology is not suitable for high-concentration compound fertilizers, pure inorganic fertilizers, or other fertilizer types that require high-temperature drying or special coating treatment.

Production Line Composition and Process

A complete horizontal mixing granulation production line typically includes three main sections: pretreatment, granulation, and post-treatment.

Pretreatment equipment includes crushers and mixers to ensure the raw materials achieve suitable particle size and uniformity.

The granulation machine is the core equipment, completing the material forming process.

Post-treatment equipment includes screening machines, polishing machines, and cooling devices to improve the quality of the final product.

The production line can be flexibly configured according to investment budget and production needs. Basic configurations meet basic production requirements, while high-end configurations can further improve the product’s appearance quality and storage stability.

Technological Advantages and Industry Comparison

Compared to traditional granulation technologies, horizontal mixing extrusion granulation has multiple advantages:

In terms of energy consumption, the energy consumption per ton of fertilizer is only 20-30 kWh, one-fifth of that of rotary drum granulation.

In terms of raw material adaptability, it can directly process organic materials with high moisture content without pre-drying.

In trms of bioactivity protection, the low-temperature process ensures a high survival rate of effective bacteria in the microbial fertilizer.

In terms of operating costs, the equipment has a simple structure, is easy to maintain, and has a long service life. Compared to flat die granulation, this technology has less stringent requirements on raw material moisture content; compared to rotary drum granulation, it has lower investment and operating costs. These advantages give it a significant competitive edge in the organic fertilizer production sector.

Selection and Operation Recommendations

Choosing a suitable production line requires consideration of capacity requirements, product positioning, and raw material characteristics. For production enterprises primarily producing bio-organic fertilizers, horizontal mixing granulation is an ideal choice. Equipment configuration should prioritize the performance of core equipment, followed by the addition of  auxiliary equipment based on actual needs.

In production and operation, raw material quality control is crucial. Maturity, moisture content, and particle size distribution directly affect production efficiency and product quality. Regarding equipment operation, the mixing speed needs to be adjusted according to the type of raw material, and the condition of vulnerable parts should be checked regularly.

Finished product quality control should focus on key indicators such as particle strength, moisture content, and granulation rate to ensure that the product meets national standards. Simultaneously, environmental requirements cannot be ignored, necessitating the installation of appropriate dust removal and deodorization equipment.

Development Trends

In the future, horizontal mixing granulation technology will develop towards intelligence, integration, and multi-functionality. By adding an automated control system, production parameters can be precisely adjusted; by integrating and optimizing equipment, overall production efficiency can be improved; and by innovating processes, the technology can be expanded to the resource utilization of more organic solid wastes such as kitchen waste and municipal sludge. These developments will further enhance the technology’s market competitiveness and environmental benefits, contributing to global sustainable agriculture.

Conclusion: An Integrated System for Sustainable Fertilizer Production

In conclusion, horizontal agitation and extrusion granulation stands as a cornerstone technology for efficient, low-energy organic fertilizer manufacturing. Its ability to process high-moisture organic waste into quality granules without damaging microbial life makes it indispensable for modern organic fertilizer production line operations focused on bio organic fertilizer production line outputs.

This granulation method is a key component within the broader ecosystem of organic fertilizer granulation technology. A complete system begins with high-quality raw material produced through controlled organic fertilizer fermentation, optimized by fermentation composting turning technology. The resulting mature compost is then shaped using the horizontal extrusion granulator, which can be complemented by other granulation technologies like a flat die pelleting machine or innovative designs such as the new type organic fertilizer granulator and new type two in one organic fertilizer granulator for specific product requirements. Together, these technologies form a versatile and efficient production chain.

Ultimately, by offering a perfect balance of energy efficiency, product quality, and raw material adaptability, this technology is a powerful driver for the sustainable conversion of organic waste into valuable soil resources, supporting the growth of circular and regenerative agriculture worldwide.

Requirements for raw materials in double roller press granulator: How to choose suitable materials?

Double roller press granulators are efficient and energy-saving equipment widely used in producing granular fertilizers like organic fertilizer, compound fertilizer, and bio-fertilizer. However, not all raw materials are directly suitable for extrusion granulation. The physical and chemical properties of the material directly affect the granulation results.
Physical Property Requirements
1.Appropriate Particle Size
Raw materials must be crushed, generally to 80-200 mesh (0.074-0.2mm). Particles that are too coarse make forming difficult, while particles too fine can affect flowability and cause the material to stick to the rollers.
2.Moderate Moisture Content
Excessive moisture (>15%) causes material to stick to the rollers and affects demolding. Insufficient moisture (<8%) makes forming difficult, and the granules become brittle. The optimal moisture range is usually 8%-12%, though this may vary based on material characteristics.
3.Good Plasticity
Materials need some stickiness and plasticity (like humic acid, composted manure, bentonite) to help improve granule formation rate and hardness.

Chemical Property Requirements
1.Moderate Organic Matter Content
For organic fertilizer materials (like compost, humic acid), an organic matter content of 30%-70% is recommended. Too high can lead to loose granules; too low affects fertilizer efficiency.
2.No Corrosive Components
Strong acids, strong alkalis, or high-salt substances should be avoided in the raw materials to prevent equipment corrosion or harm to crops.
3.No Hard Impurities
Hard objects like stones or metal fragments can damage the double roller press granulator die. Screening or magnetic separation is needed before granulation.
Double roller press granulators have strict requirements for raw material particle size, moisture, and binding properties. Selecting suitable materials and optimizing process parameters are essential for producing high-strength, qualified granular fertilizer.

The art of resource reshaping with organic fertilizer granulators

In today’s era where the circular economy is widely recognized, various granulation equipment is redefining the value of “waste” in its own way.

Stepping into a modern processing workshop, you’ll see different technological approaches: rotary drum granulators use the rotation of rollers to agglomerate materials into granules; while ring die pelleting machines, with their ring die structure, demonstrate high-efficiency production capacity in the feed and fuel sectors. Meanwhile, fertilizer compaction machines are focusing on transforming organic waste into valuable fertilizer products.

Within this diverse technological landscape, flat die pelleting machines maintain a unique balance. They don’t pursue exaggerated output, but rather achieve a perfect balance between pressure and efficiency within a compact space. This design gives them a unique advantage in small- to medium-scale production, especially with the emergence of new type two in one organic fertilizer granulators that combine mixing and granulation in a single unit, further simplifying the production process.

Even more commendable is the inclusivity of this technological family. From the reuse of agricultural and forestry waste to the molding of chemical raw materials, from traditional feed production to the emerging biomass energy sector, different granulation equipment showcases its strengths. Together, they form a bridge connecting different industries, allowing resources to continuously increase in value through cross-sectoral circulation.

With sustainable development becoming a global issue, the value of granulation technology has transcended that of a mere processing tool. Whether it’s a basic fertilizer compaction machine or an integrated, innovative model, they all embody the modern meaning of “turning waste into treasure” in the most practical way.

Key aspects of synergistic operation of core equipment in bio-organic fertilizer production

The production of high-quality bio-organic fertilizer relies on the efficient synergy of a complete set of bio-organic fertilizer equipment. From raw material composting to finished product molding, each stage is supported by dedicated core equipment.

In the raw material fermentation stage, the large wheel compost turning machine plays a crucial role. Through the rotation and turning of the large wheel, it effectively breaks up the raw material piles, allowing the material to fully contact the air. This not only rapidly increases the fermentation temperature and inhibits the growth of harmful bacteria, but also ensures uniform composting of the raw materials, laying a high-quality foundation for subsequent production. Insufficient turning can easily lead to insufficient composting of raw materials, directly affecting the subsequent mixing and granulation effects.

The composted raw materials need to be precisely mixed by a fertilizer mixer machine. At this stage, the composted raw materials, beneficial microbial agents, and auxiliary materials are added to the equipment in proportion. Mixing ensures the even distribution of each component, preventing localized nutrient enrichment or deficiency. Uniform material mixing is an important prerequisite for ensuring the quality of subsequent granulation and a key step in improving the effectiveness of bio-organic fertilizer.

In the granulation stage, the fertilizer granulator is the core equipment, and the flat die pelleting machine, due to its strong adaptability, is a commonly used type in bio-organic fertilizer production. The flat die pelleting machine produces high-strength, uniformly sized granular products through mold extrusion. During operation, the pressure and speed of the flat die pelleting machine need to be precisely adjusted according to the moisture content and particle size of the mixed materials to ensure stable granule formation and reduce material waste.

Back To Top