One-step mixing and granulation? A revolution in organic fertilizer production line efficiency is here

In traditional organic fertilizer production, mixing and granulation are often two separate processes. The material handling and switching between them not only consumes time and manpower but also increases energy consumption and dust control difficulties. However, a simpler and more efficient production line is becoming the new trend, the core of which lies in a single piece of equipment integrating these two functions—the new type two in one organic fertilizer granulator.

The value of this equipment lies not in its complex principles, but in its extreme simplification of the process. It skips intermediate steps, allowing raw materials to be uniformly mixed and finely granulated within the same working unit. For the production line, this means less space required, smoother process connections, and lower overall operating costs.

Particularly noteworthy is the quality improvement brought about by this new type two in one organic fertilizer granulator. Because the mixed material is immediately fed into the granulation section, its homogeneity and moisture content are instantly set at optimal levels, directly resulting in a higher pelletizing rate and more robust, rounded granules.

It can be said that the emergence of the new type two in one organic fertilizer granulator is not a simple superposition of functions, but a reshaping of the logic of organic fertilizer production, making the organic fertilizer production line more intelligent and more intensive.

Building the core strength for efficient and environmentally friendly fertilizer production

Under the general trend of green agricultural development, the demand for organic fertilizers is growing due to their ability to improve soil quality and enhance crop quality. Efficient organic fertilizer production equipment has become crucial for achieving large-scale and standardized production.

Organic fertilizer production equipment comes in a wide variety of types, covering the entire production process. Among them, the organic fermentation compost turning machine is the core of the initial stage. It can regulate temperature and aeration by turning the fermented materials, accelerating the decomposition of raw materials such as straw and livestock manure, preventing odor generation, and laying a high-quality foundation for subsequent production. In the processing stage, the fertilizer crusher can crush the decomposed materials to a uniform particle size, solving the problem of clumping; subsequently, the fertilizer mixer machine can accurately mix various auxiliary materials to ensure balanced nutrition in the organic fertilizer.

The granulation stage relies on organic fertilizer granulators, such as disc granulators and rotary drum granulators, which can process the mixed materials into granules. This not only facilitates storage and transportation but also controls the nutrient release rate. After granulation, the fertilizer dryer and cooler work together to remove moisture from the granules and stabilize their shape. The fertilizer screener machine then screens out products of the qualified particle size, and unqualified particles can be crushed and reused, reducing waste. Finally, the fertilizer packaging machine achieves automated quantitative packaging, improving production efficiency.

When choosing organic fertilizer production equipment, it is necessary to consider your own production capacity needs and raw material characteristics. For example, small farms can choose compact single-unit equipment, while large production enterprises are suitable for complete organic fertilizer production lines. High-quality equipment can not only increase output but also reduce energy consumption and pollution, meeting environmental protection requirements.

Core supporting equipment for bio-organic fertilizer production lines

Under the trend of green agricultural development, the intelligent and efficient operation of bio-organic fertilizer production lines has become a goal pursued by the industry. As a key piece of equipment in bio-organic fertilizer production, the fertilizer crusher’s performance directly impacts the final quality and production efficiency of organic fertilizers. Whether for the reuse of agricultural waste or large-scale organic fertilizer production, it plays an irreplaceable and crucial role.

The fertilizer crusher boasts strong adaptability, capable of processing various raw materials such as straw, livestock and poultry manure, and composted materials, perfectly addressing the shortcomings of traditional crushing equipment in handling wet and mixed materials. In the bio-organic fertilizer production line, it connects the raw material pretreatment stage, crushing large raw materials into uniform particle sizes. This not only increases the contact area between the material and microorganisms, improving subsequent fermentation efficiency, but also lays a solid foundation for the subsequent granulation process, avoiding problems such as poor particle formation caused by uneven raw material particle size.

As one of the core pieces of bio-organic fertilizer equipment, it can be used in conjunction with chain crushershorizontal crushers, and other equipment, flexibly adapting to different production needs such as bio-organic fertilizer production lines and NPK fertilizer production lines. By adjusting crushing parameters according to different raw material characteristics, it can precisely control the output particle size, meeting the production requirements of various fertilizer products such as powder fertilizers and granular fertilizers.

For organic fertilizer production enterprises, a high-quality fertilizer crusher not only improves the overall production capacity of the production line but also offers the advantages of convenient maintenance and low energy consumption, helping enterprises reduce production costs.

A path to quality improvement and efficiency for small and medium-sized fertilizer enterprises

For small and medium-sized fertilizer enterprises, the performance of NPK fertilizer production lines directly determines their market competitiveness. Choosing the right compound fertilizer production equipment and optimizing production processes are crucial for reducing costs and increasing efficiency. Many companies have achieved a transformation from “extensive production” to “precise and efficient production” by upgrading their production lines.

The core of upgrading production lines for small and medium-sized fertilizer enterprises is to balance practicality and cost-effectiveness. A basic NPK fertilizer production line requires essential equipment: in the raw material processing stage, a fertilizer crusher can crush large pieces of phosphate rock, potash fertilizer, and other raw materials to a suitable particle size, and a precise batching system can prevent deviations in nutrient ratios; a fertilizer mixer machine is used in the mixing stage to ensure uniform mixing of nitrogen, phosphorus, potassium, and auxiliary materials, laying the foundation for subsequent granulation. A fertilizer granulator can be selected based on production capacity. Subsequent drying, cooling, and coating machines, and fertilizer screener machines can screen out qualified granules, and then an automatic packaging machine completes the packaging process, significantly reducing labor costs.

Process optimization is equally indispensable. A high-quality NPK fertilizer granulation process can improve the finished product qualification rate. Automated compound fertilizer production is now mainstream; a simple PLC control system can monitor parameters such as drying temperature and granulation speed in real time, reducing human error.

Small and medium-sized fertilizer enterprises do not need to blindly pursue high-end equipment; they should choose a suitable solution based on their production capacity and product positioning. Prioritize manufacturers with comprehensive after-sales service to ensure that equipment problems can be resolved promptly.

Explanation of the production process of fertilizer granules processed by flat die pelleting machine

The flat die pelleting machine is a key piece of equipment in modern organic fertilizer production, valued by fertilizer manufacturers for its efficient and stable processing capability.

1.Raw Material Pre-treatment Stage

Ingredient Mixing: Raw organic materials (like livestock manure, straw) and additives (like bentonite, microbial agents) are mixed according to the recipe. Moisture content is usually maintained at 30-40%.

Crushing: A fertilizer crusher grinds the mixture to a particle size of 3-5mm, ensuring uniformity for the next step.

2.Core Granulation Process

Feeding System: Pre-treated material is evenly fed into the flat die pelleting machine’s inlet via conveyor belt. Feed rate is typically 2-3 tons per hour (depending on the machine model).

Compression Molding: Under vertical pressure, the material is forced through holes in the flat die (usually 4-8mm in diameter). The gap between the rollers and flat die is kept at 0.1-0.3mm, with working pressure maintained between 8-15MPa.

Cutting: Rotating knives cut the extruded material into standard pellets, 5-15mm long.

3.Post-processing

Initial Drying: The newly formed pellets enter a dryer. Temperatures are kept at 60-80°C to reduce moisture content below 15%.

Cooling and Screening: After cooling, a vibration screener machine separates out qualified pellets (typically within ±1mm diameter tolerance). Unqualified pellets go back for re-granulation.

Coating: An anti-caking coating can be applied as needed to improve storage stability.

Flat die pelleting machines are especially suitable for small-to-medium organic fertilizer plants due to their simple structure, strong adaptability, and low energy consumption. Optimizing these production stages significantly improves pellet formation rate and product quality while lowering production costs.

Rotary drum granulator: The core art of large-scale fertilizer production

In modern fertilizer granulation workshops, the rotary drum granulator stands out with its unique operating method. Through continuous tumbling and enveloping, it transforms fine powder materials into uniform and firm granules.

This slowly rotating behemoth is a typical representative of large-scale production. Its internal structure is simple and efficient; the material rises and falls continuously under the rotation of the drum, forming an ideal granulation motion.

Compared to other granulation technologies, rotary drum granulation exhibits unique advantages. Compared to the dense granules directly formed by fertilizer compaction machines through molds, granules produced by rotary drums are typically more rounded and regular. Unlike the high-density granules formed by ring die pelleting machines under mold constraints, the granules produced by rotary drum granulation often have a more porous structure. And compared to the flexibility of flat die pelleting machines suitable for small to medium production volumes, rotary drum granulators demonstrate irreplaceable value in large-scale continuous production.

This granulation method is particularly suitable for the production of bulk fertilizer products. From compound fertilizers to organic-inorganic blended fertilizers, rotary drum granulators can process materials with various formulations, adapting to different production requirements. Their excellent granulation properties and high production capacity make them the preferred equipment for many fertilizer companies.

In today’s pursuit of sustainable agricultural development, rotary drum granulation technology continues to play a vital role. It not only improves the physical properties of fertilizer products but also provides reliable equipment support for precision fertilization and efficient agriculture.

What is the working principle of an organic fertilizer disc granulation production line?

In the field of organic fertilizer production, the organic fertilizer disc granulation production line has become the preferred equipment for small and medium-sized enterprises due to its short process and low investment. So, how does this equipment transform loose organic raw materials into uniform granules?

The entire production line’s workflow revolves around the organic fertilizer disc granulator, the core equipment, and works in conjunction with a multi-bin single-scale static automatic batching system, belt conveyors, coating machines, and other equipment. First, after the raw material pretreatment stage, the multi-bin single-scale static automatic batching system precisely proportions the nitrogen, phosphorus, potassium, and organic raw materials according to production needs, ensuring that the nutrient content meets the 20%-48% standard. This step lays the foundation for granule quality.

Next, the proportioned raw materials are uniformly transported to the disc granulator via a belt conveyor. The disc granulator adopts a large-angle tilt design (usually 30°-50°). When the motor drives the disc to rotate, the raw materials inside the disc are subjected to the combined action of centrifugal force, friction, and gravity, constantly tumbling and colliding. At the same time, according to the moisture requirements of the raw materials, the equipment precisely sprays an appropriate amount of binder, allowing the raw materials to gradually agglomerate into small particles. As the disc continues to rotate, the small particles continuously adsorb surrounding raw materials, gradually growing into uniform granules of 2-5mm – this is the key to the disc granulation process.

After the granules are formed, unqualified fine powder is separated through a screening device at the bottom of the disc and returned to the granulation process. Qualified granules are then transported to the coating machine for surface treatment to improve granule stability and moisture resistance. Finally, they are transported via belt conveyor to subsequent stages, completing cooling, packaging, and other processes, ultimately becoming finished organic fertilizer products ready for shipment.

Disc Granulator: Specialist in Spherical Particle Production

In the fields of fertilizer production and industrial manufacturing, disc granulators have become key equipment for producing high-quality spherical particles through their unique rolling granulation technology. This traditional yet efficient granulation method transforms powdered raw materials into uniform spherical particles through clever mechanical design, widely applied across multiple industries including fertilizer, metallurgy, and building materials.

Innovative Working Principle

The core working principle of disc granulators is based on synergistic effects of centrifugal force, friction, and gravity. When the inclined disc rotates at 5-30 revolutions per minute, materials roll and collide along specific trajectories within the disc. By spraying appropriate amounts of water or binders, powdered materials gradually adhere to form small particles, which then absorb more materials during continuous rolling, eventually forming regular spherical particles.

The ingenuity of the equipment lies in its adjustability. The disc’s inclination angle can be adjusted between 30°-60°, while rotation speed can also be regulated as needed, enabling the equipment to adapt to characteristics of different materials. This flexibility allows disc granulators to produce particles with sphericity exceeding 85%, providing great convenience for subsequent storage, transportation, and usage.

Wide Range of Application Fields

Disc granulators play important roles in multiple industries. In fertilizer production, they are particularly suitable for manufacturing organic and compound fertilizers. Spherical particles are not only aesthetically pleasing but, more importantly, possess good flowability and uniformity, facilitating mechanized and precise fertilization. In metallurgical industries, the equipment can transform mineral powders into particles suitable for sintering and smelting.

The building materials and chemical industries also represent important application fields for disc granulators. From cement raw materials to catalysts, from refractory materials to pigment particles, this equipment provides efficient production solutions. Differences in requirements across industries can be met by adjusting equipment parameters and using lining materials of different compositions.

Efficient Production Process

The production process of disc granulators is meticulously designed to ensure high efficiency and quality. Production begins with raw material pretreatment, including crushing, mixing, and moisture adjustment. Materials are then uniformly fed into the rotating disc while appropriate amounts of water are added through precisely controlled spraying systems.

During pellet formation, controlling material moisture content between 10%-20% is crucial. Excessive moisture causes particle agglomeration, while insufficient moisture makes formation difficult. Operators observe particle formation conditions in real-time, adjusting disc angle, rotation speed, and water spray volume to ensure optimal pelletization results. Granulated particles undergo screening and post-processing, ultimately becoming qualified finished products.

Significant Technical Advantages

Disc granulators possess multiple technical advantages. Firstly, the spherical particles produced have excellent flowability, facilitating mechanized operations. Secondly, the equipment structure is relatively simple, with both operation and maintenance being relatively easy, lowering usage thresholds. Thirdly, the equipment demonstrates strong adaptability to raw materials, capable of processing various material types.

Regarding economic benefits, disc granulators also demonstrate excellent performance. Equipment investment is relatively low with controllable maintenance costs, suitable for enterprises of different scales. Production efficiency is high, with single units capable of producing 1-20 tons of particles per hour, meeting large-scale production demands.

Scientific Maintenance Management

To ensure long-term stable equipment operation, scientific maintenance management is crucial. Daily maintenance includes equipment checks before startup, condition monitoring during operation, and cleaning work after shutdown. Regular inspection of wear part conditions and timely replacement of worn components are key to maintaining equipment performance.

With continuous technological development, disc granulators are also constantly innovating and improving. New material applications extend equipment lifespan, while introduction of intelligent control systems improves production efficiency. In today’s global pursuit of sustainable development and efficient production, disc granulators will continue playing important roles in particle production across various industries, providing reliable technical support for industrial production and agricultural development.

Integrating Disc Granulation into Comprehensive Fertilizer Manufacturing Systems

The disc granulator, a core machine for disc granulator for shaping spherical particles, plays a specific role within the broader spectrum of fertilizer granulation processes. In a complete npk fertilizer production line, powder prepared by a npk blending machine is often granulated using such equipment. The disc granulator machine is central to a disc granulation production line, which is one type of fertilizer granulator system suited for materials requiring high sphericity.

For organic fertilizers, the production chain is different. It often begins with a windrow composting machine for biodegradation before the material enters a separate organic fertilizer production line or a bio organic fertilizer production line. Here, the disc granulator may also be used, but alternative technologies like the double roller press granulator in a roller press granulator production line offer dry granulation options. This diversity in equipment—from disc granulators for wet forming to roller presses for dry compaction—highlights the sophistication of modern fertilizer granulation processes, allowing manufacturers to select the optimal technology, whether for an npk fertilizer line or an organic system, to produce high-quality, application-ready fertilizers efficiently.

The Water-Drinking Smart Fertilizer: Performance of double-layer coated slow-release NPK compound fertilizer

 In farmland, water and fertilizer are the lifeblood of crop growth. However, traditional agriculture faces a serious challenge: a large portion of applied fertilizer nutrients are washed away by rain or evaporate before crops can absorb them. This not only causes enormous resource waste but also pollutes the environment.

Scientists have been searching for a smarter way to fertilize. Recently, an innovative “water-drinking smart fertilizer” has brought new hope.

The Shortcomings of Traditional Fertilizers

Conventional chemical fertilizers are like a downpour—they come quickly and leave quickly. Statistics show that the utilization rate of nitrogen fertilizer is typically only 30%-60%, and phosphorus fertilizer is even lower, at 10%-20%. Significant nutrient loss means farmers spend money without seeing the desired results, while rivers and lakes bear the burden of eutrophication.

The Ingenious Design of Double-Layer Coating

The core design concept of this new fertilizer is the combination of “controlled release” and “water retention.” Its structure is like a carefully designed sandwich:

Sturdy Core: The innermost part is a standard compound fertilizer granule rich in nitrogen, phosphorus, and potassium, providing the basic nutrients for crop growth.

Smart Inner Layer (Chitosan Coating): The core is wrapped in a layer of natural, biodegradable chitosan film. This material, extracted from shrimp and crab shells, acts like an intelligent valve, controlling the slow and sustained release of internal fertilizer nutrients, allowing crops to absorb them in a “steady stream.”

Super Outer Layer (Water-Absorbent Composite Coating): The outermost layer is a special material made from cross-linked polyacrylic acid and diatomite composite. This is where the real “black technology” lies:

Super Water Absorption: It can absorb up to 75 times its own weight in water, like countless miniature reservoirs.

Strong Water Retention: Even under pressure, the absorbed water is not easily lost.

Dual Protection: This sturdy outer coating also protects the inner chitosan film from mechanical damage.

Why Is It So Effective?

This double-layer design cleverly combines the advantages of various materials:

The Ingenious Use of Diatomite: Diatomite is a natural mineral with a porous structure and low cost. Incorporating it into the polymer not only enhances the material’s water absorption and retention capabilities but also reduces costs and improves its applicability in saline soils.

Eco-Friendly and Biodegradable: Both the inner and outer coating materials (chitosan and modified polymer) can degrade naturally in the soil without causing secondary pollution.

Precise Controlled Release: The nutrient release curve better matches the crop growth cycle, significantly improving fertilizer utilization efficiency.

Experiments show that this fertilizer can absorb 75 times its own weight in water after soaking in tap water for 2 hours and can slowly release nutrients over weeks or even months.

Addressing Global Challenges

This “water-drinking smart fertilizer” is particularly suitable for regions facing water scarcity. It can:

Reduce irrigation frequency and water usage by up to 30%-50%

Improve fertilizer utilization efficiency, reducing the amount of fertilizer needed

Provide a continuous buffer of water and nutrients for crops during dry seasons

Decrease the environmental impact of agricultural production

A New Direction for Future Agriculture

Moving from the laboratory to the fields, this innovative fertilizer represents the development direction of precision agriculture and green agriculture. It is not just a technological advancement but also a shift in agricultural production thinking—from extensive management to refined and sustainable resource utilization.

As the global population grows and climate change intensifies, such smart fertilizer technologies are expected to help us produce more food under limited land and water resources while protecting the ecological environment we depend on for survival.

From Innovative Coating to Industrial Production: The Future of Fertilizers

The development of smart, water-retaining fertilizers depends on sophisticated industrial processes to become a reality. The core nutrient pellet must first be produced using established npk fertilizer manufacturing process technology. This begins with precise raw material formulation in a npk blending machine, followed by the transformation of powders into uniform granules. Advanced npk granulation machine technology is employed, utilizing equipment like the disc granulator machine or a specialized fertilizer roller press machine, depending on the formulation and desired granule characteristics.

These core granules, produced on a complete npk fertilizer production line, are then ready for the advanced coating process that imparts the smart, water-absorbing properties. The integration of innovative material science with precision npk fertilizer production technology illustrates the future of agricultural inputs. It demonstrates how advancements in coating and controlled-release mechanisms must be paired with efficient, large-scale manufacturing—encompassing everything from initial blending in npk bulk blending machine systems to final granulation in npk fertilizer granulator machine equipment—to deliver next-generation fertilizers that address critical challenges of water scarcity, nutrient efficiency, and environmental sustainability in global agriculture.

The “Pre-treatment Powerhouse” of bio-organic fertilizer production lines

In the bio-organic fertilizer production process, the efficiency of the pre-treatment stage directly determines the quality of subsequent production, and the half-wet material crusher is the core equipment in this stage. As one of the key pieces of bio-organic fertilizer equipment, it perfectly solves the problem of processing high-humidity materials, ensuring the stable operation of the bio-organic fertilizer production line.

Traditional dry crushers often encounter problems such as clogging and low efficiency when processing wet materials such as wet straw and composted organic fertilizer due to material adhesion. However, the half-wet material crusher, with its special design, can easily handle wet materials with a moisture content of 30%-60%. Its built-in anti-clogging device prevents material adhesion, and the high-speed rotating crushing elements quickly crush the wet material into uniform particles through impact, cutting, and grinding. This not only reduces equipment failures but also improves the efficiency of subsequent fermentation and granulation processes.

In a complete bio-organic fertilizer production line, the half-wet material crusher usually connects the raw material pre-treatment and fermentation stages. For example, when processing agricultural waste, it first crushes wet straw, livestock manure, and other raw materials to a suitable particle size, increasing the contact area of the materials and allowing for more thorough microbial fermentation; when used in conjunction with other bio-organic fertilizer equipment such as chain crushers and horizontal crushers, it can flexibly adapt to different raw materials and meet diverse production needs.

In addition, this equipment also has the advantages of convenient maintenance and controllable particle size. For organic fertilizer production enterprises, choosing a high-quality half-wet material crusher can effectively improve the overall production capacity of the production line and contribute to the development of green agricultural circular economy.

Back To Top