Tag: fertilizer granulator machine

Disc granulator: High-efficiency granulation equipment for fertilizer production

In fertilizer production, selecting the right granulation equipment directly impacts product quality and production efficiency. Disc granulators, with their outstanding advantages, have become the preferred choice for many companies. As a common fertilizer granulator, they boast a granulation rate exceeding 95%. They can convert powdered or lumpy fertilizer raw materials into granules. The resulting granules have excellent sphericity and high strength, making them easy to store and transport, while also improving fertilizer utilization.

Disc granulators are highly adaptable to fertilizer raw materials, efficiently processing everything from organic fertilizers like livestock and poultry manure and fermented straw to inorganic compound fertilizers containing nitrogen, phosphorus, and potassium. Operating them simply, they easily control the granulation process by adjusting the disc’s tilt angle, rotation speed, and the amount of water or binder applied, meeting the production requirements of diverse fertilizer specifications.

At the same time, compared with other granulation equipment, the disc granulator has lower energy consumption, can effectively reduce the production and operation costs of enterprises, bring significant economic benefits to fertilizer production enterprises, and is an important equipment to promote the efficient development of the fertilizer industry.

How to Expand Sales of Organic Fertilizer Horizontal Mixers

Upgrading Product Technology to Enhance Market Competitiveness

Continuously investing in R&D, we optimize the mixing structure and materials of our horizontal mixers to address the high moisture, high viscosity, and high fiber content of organic fertilizer raw materials. For example, we utilize specially designed impellers or spiral ribbons to increase shear force and material agitation, ensuring a mixing uniformity of over 95%, addressing issues such as material sticking to the mixing chamber and uneven mixing often seen with traditional equipment. Furthermore, we use high-quality, wear-resistant and corrosion-resistant materials for our mixing components to extend equipment life and reduce maintenance costs. Furthermore, we keep pace with intelligent technology trends and equip our equipment with automated control systems to meet the personalized production process requirements of different users. Our technological leadership attracts more customers and expands our product sales channels.

Optimizing the Service System to Improve Customer Satisfaction

We have established a comprehensive pre-sales consulting service, with professional technicians providing customer selection guidance. We recommend the most suitable horizontal mixer model based on factors such as the production scale, raw material type, and budget of the customer’s organic fertilizer production line. During the sales process, we ensure efficient delivery, installation, and commissioning, shortening customer wait times and ensuring rapid equipment commissioning. After-sales service includes a 24-hour hotline to promptly resolve equipment malfunctions. Regular customer visits are also conducted to collect feedback, providing a basis for continuous product improvement. Furthermore, operation and maintenance training is provided to enhance customer skills and extend equipment life. This comprehensive, high-quality service strengthens customer trust and loyalty, fostering positive word-of-mouth and driving further sales expansion.

How to Choose the Right Disc Granulator for Your Production Line

In fertilizer production lines, the choice of disc granulator directly impacts production capacity and product quality. Combining the technical specifications and application characteristics of Huaqiang Heavy Industry’s disc granulators, a sound selection requires focusing on four key dimensions.

First, precisely matching production needs is crucial. Equipment requirements vary significantly across industries. For the fertilizer industry, when producing organic fertilizer, rubber or polyurethane-lined models are preferred to avoid corrosion and accommodate fermentable materials like livestock and poultry manure. The recommended rotational speed is 10-18 rpm to preserve organic matter activity. For inorganic compound fertilizer production, ensuring uniform feed distribution and a consistent mixing of nitrogen, phosphorus, and potassium is crucial. Production capacity selection should be based on specific parameters. For example, a small workshop with an hourly production capacity of 0.05-0.15 tons should choose the ZL-500 model, while a large factory with a production capacity of 3.5-6 tons should opt for the ZL-3600 model. A 10%-15% capacity margin should be reserved to account for seasonal fluctuations.

Second, pay close attention to the core configuration details of the equipment. The drive system determines operational stability. For example, the ZL-3600 model, equipped with an 18.5kW motor and a 10r/min speed, can accommodate high-load granulation needs. The disc inclination angle should be adjustable from 30° to 60°, allowing for flexible adjustment based on material viscosity. For example, highly viscous mineral powders require a larger inclination angle of around 50° to reduce wall sticking. The water spray system should be equipped with multiple sets of adjustable nozzles to ensure a stable moisture content of 10%-20% to prevent loose particles and agglomeration. This is crucial for the strength of fertilizer pellets and the quality of metallurgical mineral powder pellets.

Furthermore, a comprehensive assessment of the manufacturer’s capabilities is crucial. Prefer companies like Huaqiang Heavy Industry that have comprehensive production capabilities. Their 12 disc granulator models cover varying production capacity requirements and allow customers to visit their factory for a firsthand understanding of the equipment’s production processes and quality control procedures. Also, consider whether the manufacturer offers customized services.

Finally, prioritize after-sales service and supporting support. Confirm whether the manufacturer offers free installation, commissioning, and operator training to prevent production disruptions caused by improper operation. Equipment packaging must meet transportation standards, such as packaging the main unit bare to minimize impacts and plywood boxes for electrical components. Customized wooden boxes can be used for special transportation needs. Furthermore, the inventory cycle and warranty policy for consumable parts such as nozzles and inner linings must be clearly defined to ensure long-term stable operation of the equipment and reduce future maintenance costs.

Common Problems and Solutions for Disc Granulators in Organic Fertilizer Production Lines

Disc granulators are widely used in organic fertilizer production lines due to their advantages, such as uniform granulation and low cost. However, in actual operation, they are susceptible to various factors, leading to various problems that affect production efficiency and product quality.

Improper control of raw material moisture is a primary challenge. If the moisture content is too high, the raw material will easily clump on the inner wall of the disc, forming large, adhered masses. This not only prevents proper granulation but also increases the difficulty of equipment cleaning. If the moisture content is too low, the raw material will have poor flowability, making it difficult to agglomerate into granules, resulting in loose and easily broken granules. To address this issue, precise control of the raw material moisture content using a moisture meter before granulation is required. Typically, the moisture content is maintained at a stable level of 25%-35%. If the moisture content is not within this range, it should be adjusted promptly using a dryer or humidifier.

Improper disc inclination and rotation speed can also cause problems. If the inclination angle is too large, the raw materials will stay in the disc too short, causing the particles to be discharged before they have time to fully round, resulting in irregularly shaped finished particles. If the inclination angle is too small, the raw materials will pile up, easily causing “sticking” and affecting normal equipment operation. Excessive rotational speed will subject the raw materials to excessive centrifugal force, preventing effective agglomeration. Too slow rotational speed will significantly reduce granulation efficiency. Generally, the disc inclination angle should be adjusted to 35°-45° and the rotational speed to 15-20 rpm, depending on the raw material characteristics. These parameters should be gradually optimized through trial production.

In addition, uneven mixing of raw materials can also affect granulation performance. If the organic raw materials and auxiliary materials are not fully mixed, nutrient imbalances in certain areas can lead to poor granulation quality and uneven particle size. This requires the use of high-efficiency mixing equipment before granulation to ensure that the raw materials are mixed uniformly to a level above 90%. Regular inspection of the mixing blades of the mixing equipment should also be performed to prevent blade wear that may reduce mixing efficiency.

In response to these common problems, a complete inspection mechanism needs to be established during production, and the operating status of the equipment and raw material indicators should be checked regularly, and the process parameters should be adjusted in time to ensure the stable operation of the disc granulator and improve the quality of the finished organic fertilizer.

Why Choose a Disc Granulator for Granulation?

In industries requiring granular materials, such as fertilizers, building materials, and metallurgy, the choice of granulation equipment directly impacts production efficiency and product quality. Disc granulators, with their numerous advantages, have become the preferred equipment for many companies.

In terms of granulation efficiency, disc granulators excel. Their unique disc design allows the material to quickly form a stable trajectory during rotation, shortening the time it takes for the material to aggregate and granulate. For example, in fertilizer production, under similar operating conditions, a disc granulator can process dozens of tons of raw materials per hour, increasing efficiency by over 30% compared to traditional granulation equipment. This significantly reduces production cycle time and meets the needs of large-scale production.

Granulation quality is a key consideration when choosing a granulator, and disc granulators offer significant advantages in this regard. By precisely controlling the disc’s rotational speed, inclination, and material moisture content, they achieve uniform granule size, typically maintaining a stable diameter of 2-5 mm. The granules are also strong and resistant to breakage. This characteristic is particularly important in fertilizer production. High-quality granulated fertilizers are not only easy to store and transport, but also ensure uniform nutrient release, improving fertilizer utilization and enhancing product market competitiveness.

The disc granulator’s wide range of applications is a key factor in its popularity. It can efficiently adapt to applications ranging from organic fertilizer and compound fertilizer production lines to the processing of building materials such as cement and expanded clay, and even to the granulation of metal ore powders. Different materials require only adjustments to relevant parameters, eliminating the need for large-scale replacement of equipment components. This reduces equipment costs associated with producing different products and enhances production flexibility.

Disc granulators also offer advantages in terms of energy consumption and cost. Their relatively simple structure and low power consumption during operation can reduce energy costs per ton of material produced by 15%-20% compared to other types of granulators. Furthermore, the equipment’s low manufacturing and maintenance costs, along with the limited number of wearing parts and easy replacement, reduce ongoing operating expenses and offer significant financial savings.

Overall, the disc granulator‘s advantages in efficiency, quality, applicability, and cost make it an ideal choice for granulation production.

Common Problems with Disc Granulators in Fertilizer Production

Fertilizer granulators are widely used in the fertilizer industry, and disc granulators are particularly common. What are some common problems with disc granulators in fertilizer production? If problems such as material sedimentation and clumping occur during granulator operation, how can you resolve them? Below, we will guide you through resolving these issues.

Precipitation can occur during fertilizer production. Some materials cannot be mixed; when they are mixed and dissolved in water, precipitation occurs. Some fertilizers are soluble in certain proportions, but above a certain concentration, salting out occurs, causing another material to precipitate. Some materials, such as metal salts, are easily soluble in acidic media, but will precipitate. Other materials, such as humic acid, are easily soluble in alkaline media, but will precipitate when dissolved in acidic solutions.

The main methods to prevent precipitation are to properly adjust the pH of the solution, add cosolvents, and increase the solubility of insoluble substances. The raw materials used in NPK fertilizer production lines should be properly proportioned to prevent salting out and oversaturation. Appropriate additives should be added to protect the reaction materials and prevent precipitation. Appropriate raw materials should be selected to prevent precipitation caused by reactions between them.

Bloating in fertilizer production is caused by the release of gas from the reaction of two or more materials. Materials that may cause bloating during fertilizer production include borax, ammonium salts, and fillers. To effectively prevent bloating, the following points should be noted when using a disc granulator to produce pellets: When sourcing qualified raw materials, avoid blindly pursuing low costs; and ensure that raw materials are properly combined to prevent chemical reactions between them.

Clumping in fertilizer production: This problem is primarily related to the raw materials, humidity, temperature, external pressure, and storage time. Organic fertilizer production equipment requires the proper selection of raw materials, meaning those that are less prone to caking.

How to Improve the Efficiency of the Granulator in an Organic Fertilizer Production Line

As the core equipment in an organic fertilizer production line, the efficiency of the granulator directly determines the production capacity and product quality of the entire line. Improving granulator efficiency requires precise attention to multiple aspects, including raw materials, equipment, operation, and maintenance, to overcome common production bottlenecks.

Proper raw material pretreatment is fundamental. Organic fertilizer raw materials have complex compositions. Improper moisture and particle size can easily lead to clogging or loose granules. Moisture content should be controlled between 25% and 35%. If the moisture content is too high, a dryer should be used for dehydration; if it is too low, water spraying should be used for conditioning. A pulverizer should be used to control the particle size to 80-100 mesh to prevent impurities from entering the machine. Binders such as bentonite and starch should be added in appropriate proportions to enhance raw material cohesion, reduce powder waste, and increase granulation success rates.

Scientifically controlling equipment parameters is a key measure. Different granulators (such as rotary drum granulators and double roller press granulators) require matching parameters. For rotary drum granulators, the drum speed (usually controlled at 15-25 rpm) and tilt angle (3-5°) must be adjusted according to the raw material characteristics; for double roller press granulators, the roller pressure and gap must be appropriately set. Furthermore, the feeder must ensure a uniform feed rate to prevent material fluctuations that could cause the granulator to “run out” or “stuck,” maintaining stable equipment operation.

Enhanced routine maintenance is essential. During granulator operation, clean the inner wall of the drum or the extrusion die of residual material every shift to prevent scaling that could affect performance. Check bearing lubrication weekly and refill with high-temperature grease to prevent friction overheating and reduce the speed. Replace worn scrapers and liners monthly to prevent component aging and reduced molding efficiency. Maintain an equipment maintenance log to record parameters and faults to facilitate troubleshooting and reduce downtime.

Optimizing supporting processes can further improve efficiency. Linking the pelletizer with upstream and downstream processes, using sensors to monitor raw material data in real time, and adjusting upstream equipment parameters to ensure quality raw materials. Optimizing the drying and pelletizing speeds prevents pellet accumulation and moisture, minimizing secondary processing, and maximizing pelletizer efficiency.

In summary, improving pelletizer efficiency requires a balanced approach of “source control, process optimization, and ongoing maintenance.” Through refined management, production and quality can be increased while extending equipment life, ultimately creating greater profitability for the production line.

Disc granulators are a powerful granulation tool for diverse applications

As a highly efficient granulation machine, disc granulators have broad and important applications across multiple industries thanks to their simple structure, convenient operation, and excellent granulation results.
In fertilizer production, disc granulators are essential key equipment. They play a vital role in the production of compound fertilizers, organic fertilizers, and slow-release fertilizers. In compound fertilizer production lines, disc granulators mix various basic fertilizer ingredients in appropriate proportions. The rotating motion of the discs gradually forms uniform granules under the influence of centrifugal force and gravity. The resulting granulated fertilizer is not only easy to store and transport, but also improves fertilizer utilization and reduces nutrient loss. In organic fertilizer production lines, disc granulators ferment organic materials such as livestock and poultry manure and straw before granulating them. This converts loose organic materials into granulated organic fertilizer, improving its physical properties and making it easier for farmers to use. This also promotes the resource utilization of agricultural waste.
The metallurgical industry is also a key application for disc granulators. In the processing of metal ore powder, granulation is often necessary to improve smelting efficiency and utilization. Disc granulators can granulate metal ore powders such as iron ore and manganese ore. The resulting granules are characterized by high strength and good air permeability. Once introduced into smelting equipment such as blast furnaces, they facilitate a more complete smelting reaction, laying the foundation for efficient production in metallurgical enterprises.
In the environmental protection field, disc granulators have demonstrated significant application value in solid waste treatment. Granulating solid wastes such as sludge generated by municipal sewage treatment plants and slag discharged from industrial production using disc granulators not only reduces the volume of solid waste, facilitating subsequent landfill, incineration, or resource recovery, but also reduces the risk of environmental pollution.
Due to its flexible applicability, disc granulators continue to play an important role in various application scenarios. As production requirements continue to increase across various industries, their application prospects will continue to expand.

How does a rotary drum granulator work in an organic fertilizer production line?

In organic fertilizer production lines, a rotary drum granulator is the core equipment for raw material formation. It has become a mainstream choice because it meets the cohesiveness and granularity requirements of organic fertilizers such as livestock and poultry manure and composted straw. Its operation revolves around “raw material mixing – granule agglomeration – screening and output,” resulting in an efficient and stable mechanism.

The equipment primarily consists of an inclined drum (3°-5° inclination), a transmission system, a spray system, and a scraper assembly. Scrapers on the inner wall of the drum drive the material to tumble, while the spray system regulates moisture. The scraper removes material adhering to the drum wall to prevent clogging.

The first step is “raw material pretreatment and feeding.” Composted and crushed organic fertilizer raw materials (25%-35% moisture) are mixed with auxiliary materials such as clay in a suitable proportion and then fed into the drum through the feed port. The motor drives the drum to rotate at a low speed of 10-15 rpm. The scrapers repeatedly lift and drop the material, forming a uniform layer.

The second step is the core “granule agglomeration and formation” phase. A spray device applies a metered amount of water or adhesive, depending on the moisture content of the raw materials, to create a sticky surface. As the drum rotates continuously, the material particles agglomerate into small particles through collision, friction, and compression. These small particles further absorb the raw materials and grow to qualified granules of 2-5mm. The tilted design of the drum allows the particles to naturally move toward the discharge end, enabling continuous production.

The final step is “granule screening and optimization.” The formed granules are screened to separate fine powder from bulky material. The fine powder is returned to the granulator, while the bulky material is crushed and reused to ensure acceptable yields. Furthermore, a scraper cleans the drum wall of any residue in real time to ensure efficiency and prevent hardened residue from affecting subsequent production.

In short, the rotary drum granulator uses gentle physical agglomeration to adapt to the characteristics of organic fertilizer raw materials, efficiently producing uniform granules and providing a key guarantee for the stable operation of organic fertilizer production lines.

Key Maintenance Points for Disc Granulators in Organic Fertilizer Production Lines

In organic fertilizer production lines, the disc granulator is the core equipment for raw material processing. Its operating condition directly affects product quality and production efficiency. Scientific maintenance can extend equipment life, reduce downtime, and lower costs. The following details maintenance methods from three perspectives: daily, periodic, and long-term.

Daily maintenance requires “cleaning and inspection in tandem.” After each shutdown, promptly clean the discs of residual material to prevent hardening and scratching of the disc surface or increased operating load. Use soft tools to prevent damage to the liner. Also, check the disc’s tilt angle (normally 45°-55°). If offset, correct it using the bracket bolts. Observe the transmission system daily for abnormal noise and check the motor and reducer temperatures. If the temperature exceeds 60°C, shut down the machine for inspection.

Regular maintenance focuses on “component maintenance and lubrication.” Perform a comprehensive weekly inspection, focusing on the meshing of the transmission gears. Adjust and replace any wear or excessive clearance. Inspect the bearing seals to prevent dust intrusion. Replace the bearing grease monthly. Choose a high-temperature, dust-resistant lithium-based grease, filling it to fill 2/3 of the bearing’s internal space. Disassemble and inspect the scraper blade quarterly. If the blade wear exceeds 3mm, polish or replace it. Ensure a 1-2mm gap between the blade and the liner to prevent material adhesion.

For long-term maintenance, maintain “equipment inspection and record keeping.” Perform a comprehensive annual disassembly and inspection. If the liner thickness decreases by 1/3, replace it entirely. Perform a flaw inspection on the frame to identify any weld cracks and repair them. Maintain a maintenance log, recording maintenance times, details, and replaced parts. Use data analysis to predict failures and plan maintenance in advance.

In short, disc granulator maintenance should adhere to the principle of “prevention first, prevention combined.” This involves combining daily cleaning, regular maintenance, and ongoing inspections to ensure optimal equipment operation and a stable and efficient organic fertilizer production line.

Back To Top